WATER

Course: Biochemistry I (BIOC 230)

Textbook:
Principles of Biochemistry, 5th Ed., by L. A. Moran and others. 2014, Pearson. . Chapter 2

Why does the abundance of water allow

life to exist on the planet earth?

Properties of water

\square The dipolar nature of the $\mathrm{H}_{2} \mathrm{O}$ molecule is shown
in a ball-and-stick model

Very polar, V-shaped
Oxygen is highly electronegative
H-bond donor and acceptor
High boiling point, melting point, heat of vaporization, surface tension

Hydrogen bonding

\square H-bonds can occur between any electronegative atom and a hydrogen atom attached to another electronegative atom
\square Hydrogen bonds are much weaker than typical covalent bondOrientation is important in H -bonding. H -bond is most stable when hydrogen atom and the electronegative atoms are aligned or nearly in line

Hydrogen bonding in water

Note: the atoms involved in the H -bond are aligned!!

H-bonding by a water molecule

\square In ice form, each water molecule can form 4 H -bonds with surrounding water molecules \ggg this gives ice an unusually high melting point
\square The fluidity of liquid water compared to rigidity of ice is primarily a consequence of the irregular pattern of H bonds in liquid water
\square Average H -bond lifetime in water is ~ 10 picosecond (10^{-} ${ }^{11}$ s)

H-bonding by a water molecule

\square The density of water increases as it cools until it reaches $1.000 \mathrm{gm} / \mathrm{mL}$ at $4^{\circ} \mathrm{C}(277 \mathrm{~K})$
\square Thus "Gram" is defined as the weight of 1 mL of water at $4^{\circ} \mathrm{C}$
\square Water expands below $4^{\circ} \mathrm{C}$, thus ice with its open lattice form is less dense than liquid water, $\sim 0.924 \mathrm{gm} / \mathrm{mL}$What are the consequences of this phenomenon? ice is less dense than water?

Hydrogen Bonds between water molecules

Hydrogen Bonding of Water

One $\mathrm{H}_{2} \mathrm{O}$ molecule can associate with 4
other $\mathrm{H}_{2} \mathrm{O}$ molecules
-Ice: 4 H -bonds per water molecule
-Water: 2.3 H-bonds per water molecule

Specific heat \&
 heat of vaporization of water

\square Water has high S.H. and high H.V.
\square Specific heat (or heat capacity): amount of heat needed to raise the temperature of 1 gm of the substance by $1^{\circ} \mathrm{C}$

- Consequence of high S.H: temperature fluctuations
within cells are minimized
\square Consequence of high H.V:

Water is an excellent solvent $>$ the solvent of life

\square Aqueous solution: water is the solvent
\square Water is polar and thus dissolves ionic and non-ionic substances .> hydration shell
\square Water do not dissolve non-polar compounds
\square Water has intrinsic viscosity that doesn't greatly impede the movement of dissolved molecules

- Water molecules are small compared to other solvents and can associate with soluble particles to make them more soluble
\square Contribute to osmotic pressure in cells

Discussion!!

\square Water is not a universal solvent. Is this an advantage or disadvantage?

Non-polar substances are insoluble in water

Many lipids are amphipathic

How detergents work?

Micelle Action

Biological
 Hydrogen Bonds

Figure 2-10b Principles of Biochemistry, 4/e © 2006 Pearson Prentice Hall, Inc.

Ionization of Water

One of the most important properties of water is its slightly tendency to ionize.

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{H}_{3} \mathrm{O}^{\oplus}+\mathrm{OH}^{\ominus}
$$

Unnumbered figure pg 38 Principles of Biochemistry, 4/e - 2006 Pearson Prentice Hall, Inc.

Hydronium Hydroxide ion ion

Brønsted-Lowry concept of acids and bases

Acid: proton donor\square Base: proton acceptor or hyroxide ion donor

Ionization of Water

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}
$$

$$
\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{H}^{+}+\mathrm{OH}^{-}
$$

$$
\mathrm{K}_{\mathrm{eq}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \quad \mathrm{K}_{\text {eq }}=1.8 \times 10^{-16} \mathrm{M}
$$

$$
\left[\mathrm{H}_{2} \mathrm{O}\right]
$$

$$
\left[\mathrm{H}_{2} \mathrm{O}\right]=55.5 \mathrm{M}
$$

NOW! What is the conc of $\mathrm{H}+$ and $\mathrm{OH}-$???

How to calculate the conc of water $=(1000 \mathrm{gm}$ is the weight of 1 liter $) /$
18 gm is the mass of 1 mole

Ionization of Water (cont'd)

$$
\mathrm{K}_{\mathrm{eq}}=\left[\mathrm{H}^{+}+\mathrm{COH}\right]
$$

[$\mathrm{H}_{2} \mathrm{O}$]
$\left[\mathrm{H}_{2} \mathrm{O}\right] \mathrm{K}_{\text {eq }}=\left[\mathrm{H}^{+}\right][\mathrm{OH}]$
$\left(1.8 \mathrm{X} \mathrm{10}{ }^{-16} \mathrm{M}\right)(55.5 \mathrm{M})=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
$1.0 \times 10^{-14} \mathrm{M}^{2}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=\mathrm{K}_{\mathrm{w}}$
If $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$then $\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-7} \mathrm{M}$
$\mathbf{K}_{\mathrm{w}}\left(=\left[\mathrm{H}^{+}\right][\mathrm{OH}-]\right)$: the ion-product constant of water.

pH Scale

\checkmark Devised by Sorenson (1902)
$\checkmark[\mathrm{H}+]$ can range from $1 \mathrm{M}(\mathrm{pH}=0)$ and $\quad 1 \times 10^{-14} \mathrm{M}(\mathrm{pH}=14)$
\checkmark using a log scale simplifies notation
$\checkmark \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
\checkmark Neutral pH $=7.0$

Measurement of pH

pH is measured using a pH meter
\square Normal pH of blood is 7.4, which is frequently referred to as
 "physiological pH"
\square In diabetes, blood pH is low \gg acidosis
$\square \mathrm{pH}>7.4 \gg$ alkalosis, results from prolonged vomiting or hyperventilation

Calculation of pH of a solution?

\square What is the pH of a solution of 0.01 M NaOH ?$1.0 \times 10^{-14} \mathrm{M}^{2}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
[$\mathrm{OH}-]=10^{-2} \mathrm{M} \gg[\mathrm{H}+]=10^{-12} \mathrm{M}$
$\square \mathrm{pH}=-\log 10^{-12}=12$What is the pH of a solution of 1 M HCl ?
$\square[\mathrm{OH}-]=10^{-14} \mathrm{M} \gg[\mathrm{H}+]=1 \mathrm{M}$
$\square \mathrm{pH}=-\log 1=0$

Weak Acids and Bases Equilibria

\square Strong acids / bases - disassociate completely
\square Weak acids / bases - disassociate only partially
\square Enzyme activity is sensitive to pH
\square Weak acids/bases play important role in protein structure/function

Pepsin

Trypsin

Lysozyme

Acid/conjugate base pairs

$$
\begin{aligned}
\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} & \longrightarrow A^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \\
\mathrm{HA} & \rightleftarrows A^{-}+\mathrm{H}^{+}
\end{aligned}
$$

$H A=$ acid (donates $\left.H^{+}\right)($Bronsted Acid)
$A^{-}=$Conjugate base (accepts H^{+})(Bronsted Base)
$\mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right] \quad \mathrm{K}_{\mathrm{a}}$ \& pK_{a} value describe tendency to [HA] loose H^{+}
$p K_{a}=-\log K_{a} \quad \begin{aligned} & \text { large } K_{a}=\text { stronger acid } \\ & \text { small } K_{a}=\text { weaker acid }\end{aligned}$

pKa values determined by titration

Phosphate has three ionizable H^{+}and three pKas

Buffers

\square Buffers are aqueous systems that resist changes in pH when small amounts of a strong acid or base are added.
\square A buffered system consist of a weak acid and its conjugate base.
\square The most effective buffering occurs at the region of minimum slope on a titration curve (i.e. around the pKa).
\square Buffers are effective at pH that are within $+/-1 \mathrm{pH}$ unit of the pKa

Henderson-Hasselbach Equation

1) $\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}+[\mathrm{A}]\right.}{[\mathrm{HA}]} \quad \mathrm{HA}=$ weak acid
2) $\left[\mathrm{H}^{+}\right]=\mathrm{K}_{a} \frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]}$
$\mathrm{A}^{-}=$Conjugate base
3) $-\log \left[\mathrm{H}^{+}\right]=-\log \mathrm{K}_{\mathrm{a}}-\log \frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]}$
4) $-\log \left[\mathrm{H}^{+}\right]=-\log \mathrm{K}_{\mathrm{a}}+\log \left[\mathrm{A}^{-}\right]$ [HA]

* H-H equation describes the relationship between
pH , pKa and buffer concentration

5) $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log [\mathrm{A}]$
[HA]

Case where 10% acetate ion 90% acetic acid

- $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log _{10} \frac{[0.1]}{[0.9]}$
- $\mathrm{pH}=4.76+(-0.95)$
- $\mathrm{pH}=3.81$

Case where 50% acetate ion 50% acetic acid

Case where 90% acetate ion 10\% acetic acid

- $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log _{10} \frac{[0.9]}{[0.1]}$
- $\mathrm{pH}=4.76+0.95$
- $\mathrm{pH}=5.71$

Cases when buffering fails

- $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log _{10} \frac{[0.99]}{[0.01]}$
- $\mathrm{pH}=4.76+2.00$
- $\mathrm{pH}=6.76$
- $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log _{10} \frac{[0.01]}{[0.99]}$
- $\mathrm{pH}=4.76-2.00$
- $\mathrm{pH}=2.76$

Figure 2-20 Principles of Biochemistry, 4/e - 2006 Pearson Prentice Hall, Inc.

Class activity!

1. Which of the following functional groups is NOT a polar group?
A. Hydroxyl group (-OH)
B. Carboxy group $(-\mathrm{COOH})$
C. Sulfhydryl group (-SH)
D. Methyl group $\left(-\mathrm{CH}_{3}\right)$
2. Which one of the above groups is ionized (charged) at physiological pH ?
3. Which of the above groups can be a hydrogen bond donor or acceptor?

Class activity!

1. A weak acid has a pKa of 6.5. If it is used as a buffer, the buffer capacity of this buffer is:
A. $5-8$
B. $5.5-7.5$
C. 4.5-8.5
2. The optimum pH of an enzyme is 8 . You want prepare a buffer solution for this enzyme, then the best buffer will be
A. Buffer $\mathrm{A}, \mathrm{pKa}=4.8$
B. Buffer $\mathrm{B}, \mathrm{pKa}=9.5$
C. Buffer C, $\mathrm{pKa=7.8}$

